Extensions 1→N→G→Q→1 with N=C2 and Q=C4⋊(C32⋊C4)

Direct product G=N×Q with N=C2 and Q=C4⋊(C32⋊C4)
dρLabelID
C2×C4⋊(C32⋊C4)48C2xC4:(C3^2:C4)288,933


Non-split extensions G=N.Q with N=C2 and Q=C4⋊(C32⋊C4)
extensionφ:Q→Aut NdρLabelID
C2.1(C4⋊(C32⋊C4)) = (C3×C12)⋊4C8central extension (φ=1)96C2.1(C4:(C3^2:C4))288,424
C2.2(C4⋊(C32⋊C4)) = C325(C4⋊C8)central extension (φ=1)96C2.2(C4:(C3^2:C4))288,427
C2.3(C4⋊(C32⋊C4)) = (C6×C12)⋊2C4central extension (φ=1)48C2.3(C4:(C3^2:C4))288,429
C2.4(C4⋊(C32⋊C4)) = C8⋊(C32⋊C4)central stem extension (φ=1)484C2.4(C4:(C3^2:C4))288,416
C2.5(C4⋊(C32⋊C4)) = C3⋊S3.4D8central stem extension (φ=1)484C2.5(C4:(C3^2:C4))288,417
C2.6(C4⋊(C32⋊C4)) = (C3×C24).C4central stem extension (φ=1)484C2.6(C4:(C3^2:C4))288,418
C2.7(C4⋊(C32⋊C4)) = C8.(C32⋊C4)central stem extension (φ=1)484C2.7(C4:(C3^2:C4))288,419

׿
×
𝔽